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Abstract

We present a unified approach for action recognition on
various sensor data modalities. Motion is represented in
an image, a EfficientNet 2D-CNN is used for training an
action recognition model on the common image representa-
tion. Our unified approach handles different sensor modal-
ities in a common way. That distinguishes our approach
to many previous proposed approaches that propose differ-
ent methods per modality. Therefore, it remains simple to
evaluate which sensor fits a certain action recognition prob-
lem. We show that our approaches generalizes well across
5 different data modalities (pose sequences transformed
from videos, skeleton sequences, motion capture data, in-
ertial measurements, Wi-Fi CSI fingerprints) and achieves
comparable results on 4 public available datasets and the
MMAct challenge dataset.

1. Introduction
Action recognition is a well established topic in the com-

puter vision domain. Potential applications are manifold
like for surveillance of elder people or the improvement
of human-robot-interaction. Research in this field has fol-
lowed the advances from hand-crafted features to learned
ones.

Approaches that generalize well across modalities are
widely neglected. Our approach follows the idea to repre-
sent motion in an image and use a 2D-CNN to classify the
represented motion [20, 10]. Our approach achieves reason-
able accuracy but still generalizes well across a variety of
modalities. A benefit is that the adaption to a new modality
reduces to defining which data should be represented in the
image without adoptions to the network architecture and the
overall training process. This benefit makes it more flexible
than many action recognition approaches that focus solely
on action recognition on a single modality. In Table 1 we
compare different recent approaches in terms of modality
support. A unified action recognition approach for multi-
ple modalities allows fast integration of different sensors

Table 1. Modality support from various approaches.
Name Skl IMU WiFi MoCap RGB

Liu et al. [10] 3 7 7 7 7
Ehatisham et al. [2] 7 3 7 7 3
Imran et al. [5] 3 3 7 7 3
Liu et al. [11] 3 7 7 7 7
Memmesheimer et al. [13] 3 3 3 3 (3)
Ours 3 3 3 3 (3)

to overcome sensor-specific drawbacks like occlusion for
depth cameras or missing context for wearable sensors. In
contrast to approaches like [5] our approach does not re-
quire designing sub-models per modality. Our approach re-
mains also flexible for integration into early- or late-fusion
approaches for multi-modal experiments. In this paper we
experiment with an early fusion based on a representation
level omitting the overhead of individual network streams.

Motion data in the form of skeleton sequences, motion
capture data or inertial measurements are sampled and rep-
resented in an image. A 2D-CNN as known from image
classification is used to classify the motion-images. Rep-
resenting data in 2D data structures like an image has for
classification has been previously proposed for i.e. speech
recognition [22, 4] or skeleton-based action recognition
[20, 10]. In this paper we built up on the representation as
proposed for multi-modal one-shot action recognition [14]
and embed it in a classification setting for action recognition
in various data modalities.

A goal of this work is to motivate research not only to im-
prove a single modality recognition accuracy, but also focus
on the transferability to other sensor modalities. The overall
contribution of this paper are as follows:

• A simple approach for unified action recognition for
skeleton, inertial, Wi-Fi and motion capturing data is
presented.

• Experiments are conducted on four publicly available
datasets for various data modalities.

1



2. Related Work

An in-depth review for action recognition on various
data-modalities is given by Sun et al. [17].

For Wi-Fi based action recognition 1D-CNN [19] and
2D-CNN [13] based approaches have been presented pre-
viously. The 52 Channel State Information (CSI) finger-
prints are used to determine an action class. Our approach
builds around a 2D-CNN with a dense image representation
in contrast to [13] using a sparse representation. A good
indicator for the progress of skeleton-based action recogni-
tion are the results on the NTU RGB+D dataset [8]. Ini-
tial approaches are based around Long Term Short Term
Memory (LSTM) [9] or Recurrent Neural Networks (RNN).
For skeleton-based action recognition, approaches based on
Graph Convolutional Networks (GCN) are defining current
state-of the art methods. With the spatio-temporal GCN ap-
proach by Yan et al. [21] steadily improved action recog-
nition on skeleton-sequences [11, 15]. To the best of our
knowledge, there is currently no GCN-based approach that
is used for action recognition on various data modalities.

Along with the UTD-MHAD dataset which contains
RGB-D, skeleton and inertial data, Chen et al. [1] presented
approaches to fuse depth information and inertial measure-
ments to improve action recognition accuracy. They use
separate approaches per modality, For depth sequences they
use depth motion maps and for gyroscope signals they use
partitioned temporal windows. Imran et al. [5] propose a
three-stream architecture, with different sub-architectures
per modality. A 1D-CNN for gyroscopic data, a 2D-CNN
for a flow-based image classification and an RNN for skele-
tal classification. Finally, the features of the submodels
are fused and an action class label is predicted. The fused
results are promising, and additional modality fusion im-
proved the results. However, the complexity of the archi-
tecture and their sub-architectures require engineering and
training overhead and lead to increased run-times by each
added modality. This is an issue that we overcome by using
a common representation and training approach for various
modalities.

Most fusion methods rely on complex individual repre-
sentations per modality or propose complex multi-stream
architectures. We build on our previous work [13], which
follows a similar approach, but we improve the sparse rep-
resentation with a dense representation [14]. Various rep-
resentation have been proposed for multiple data modali-
ties [10, 20], however the focus has been mainly on single
modality action recognition in contrast to a unified approach
for multiple sensor modalities.

3. Approach

Our approach represents motion from various data
modalities into images. We expect the motion data to be

present as a multivariate signal stream. This allows di-
rect application for skeleton-sequences, inertial measure-
ment units, Wi-Fi CSI fingerprints and motion capturing
data as we experimented with. Further sensors should like
gyroscopes or positioning systems should be straight for-
ward to integrate. Videos might be integrated by extracting
featured from sampled frequencies and transform them to
images. The transformed images are used to train a classi-
fier. In our case we use a recently proposed EfficientNet-B2
[18] architecture. The overall approach is depicted in Figure
1.

3.1. Problem Formulation

A signal-level problem formulation of the action recog-
nition problem ensures a flexible integration of various sen-
sor modalities. We follow the signal-level formulation of
[13]. The problem of action recognition with a given set of
k actions Y = {0, . . . , k} can be reformulated as a classi-
fication problem, where a mapping f : RN×M → Y must
be found that assigns an action label to a given input. The
input in our case is a Matrix S ∈ RN×M where each row
vector represents a discrete 1-dimensional signal and each
column vector represents a sample of all sensors at one spe-
cific time step. The identity of each channel is encoded in
the y-axis of the image. Sampled signal states over time are
encoded throughout the x-axis of the image.

3.2. Representation

Our approach builds upon a discriminable image rep-
resentation. We follow a representation as proposed in
[14] for one-shot action processing. Multivariate signal
or higher-level feature sequences are reassembled into a 3
channel image. Each row of the resulting image corre-
sponds to one joint and each channel corresponds to one
sample in the sequence. The color channels, red, green and
blue, represent respectively the signals’ x-, y- and z-values.
The resulting images are normalized to the range of 0 to 1.
We chose to normalize over the whole image to preserve the
relative magnitude of the signals. In contrast to the repre-
sentations used for multimodal action classification [13] or
skeleton based action recognition [20, 10] the proposed rep-
resentation is invertible and more compact. Example repre-
sentations are shown in Figure 2.

3.3. Architecture

In contrast to other action recognition approaches for
multiple modalities [5, 1] that employ different sub-
architectures per modality, we propose a common architec-
ture for all modalities. As we represent all modalities in
an image we use a 2D-CNN, instead of presenting a cus-
tom architecture we employ a EfficientNet-B2 [18] archi-
tecture which has recently proven to perform well in the
image classification task. The EfficientNet model family
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Figure 1. Approach overview. Signal data from various sensor modalities are transformed into a common dense image representation. A
EfficientNet-B2 2D-CNN is used for training on basis of the image representation.

is based on architecture search conditioned by maximizing
the validation accuracy while minimizing the floating-point
operations. This makes it a practical candidate for our ap-
proach and potential applications.

4. Experiments

We use four different datasets to verify that our action
recognition approach is applicable to four different sensor
modalities. We present the datasets along with their results
in Table 2 and finally give a discussion.

4.1. Datasets

MMAct Challenge

The dataset provided for the MMAct challenge contains 35
action classes and is divided into cross-scene and cross-
view splits. Video, poses gathered by OpenPifPaf [7], ac-
celerometer, gyroscope and orientation sequences were pro-
vided during training. For testing, only video sequences
were provided. For the MMAct challenge in the cross-scene
protocol 12793 training samples, 5024 validation and 17154
unknown test samples were provided. For the cross-view
protocol 17653 training samples, 3499 validation and 13869
test samples were provided. As during testing only video se-
quences were provided, we extracted human pose features
using OpenPifPaf [7] with a scale of 0.2 and enforced full-
body poses. Further, poses with a overall confidence un-
der 0.2 were rejected. Frames containing no pose estimates
were filled with empty poses. Similarly, we processed the
training videos and used the extracted pose sequences in
addition to the already provided ones. Example representa-
tions, as used for the MMAct challenge, are shown in Figure
3. Results for the challenge are given in Table 3.

NTU RGB+D 60 / NTU RGB+D 120

The NTU RGB+D 120 [8] dataset is a large scale action
recognition dataset containing RGB+D image streams and
skeleton estimates. In contrast to the first NTU RGB+D
60 version of the dataset which contained 56880 sequences
with 60 classes, the extended NTU RGB+D 120 dataset
consists of 114,480 sequences containing 120 action classes
from 106 subjects in 155 different views. Cross-view and
cross-subject splits are defined as protocols. For the cross-
subject evaluation, the dataset is split into 53 training sub-
jects and 53 testing subjects, as reported by the dataset au-
thors [8]. For the cross-setup evaluation, the dataset se-
quences with odd setup IDs are reserved while the remain-
der is used for training. Resulting in 16 setups used during
training and 16 used for testing. We report results on both
versions with both cross subject and cross view splits.

UTD-MHAD

This dataset [1] contains 27 actions of 8 individuals per-
forming 4 repetitions each. RGB-D camera, skeleton esti-
mates and inertial measurements are included. The RGB-D
camera is placed frontal to the demonstrating person. The
IMU is either attached at the wrist or the leg during the
movements. A cross-subject protocol is followed as pro-
posed by the authors [1]. Half of the subjects are used for
training while the other half is used for validation. This
dataset is a great candidate because it contains various data
modalities and also allows fusion experiments. Because of
its different modalities we use it for experiments on skele-
ton, inertial and fused data.

ARIL

This dataset [19] contains Wi-Fi Channel State Information
(CSI) fingerprints. The CSI describes how wireless signals
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(a) (b) (c) (d)

Figure 2. Example representations for skeleton sequences (a), inertial measurements (b), fused measurements (c) and Wi-Fi CSI fingerprints
(d). The four example representations show the range of modalities we conducted experiments on.

(a) (b) (c)

Figure 3. Example representations for the pose sequences of the MMAct challenge dataset for the action classes standing up (a), setting
down (b), transfering objects (c).

propagate from the transmitter to the receiver. A standard
IEEE 802.11n Wi-Fi protocol was used to collect 1398 CSI
fingerprints for 6 activities. The data is varying by location.
The 6 classes represent hand gestures hand circle, hand up,
hand cross, hand left, hand down, and hand right targeting
the control of smart home devices. For our experiments, we
use the same train/test split as was used by the authors of
the dataset (1116 train sequences / 278 test sequences).

Simitate

The Simitate [12] benchmark focuses on robotic imitation
learning tasks. Hand and object data are provided from a
motion capturing system in 1932 sequences containing 27
classes of different complexity. The individuals execute
tasks of different kinds of activities from drawing motions
with their hand-over to object interactions and more com-
plex activities like ironing. This dataset is interesting as we
can fuse human and object measurements from the motion
capturing system to add context information. Good action
recognition capabilities will allow direct application to sym-
bolic imitation approaches. We use an 80/20 train/test split
for our experiments.

4.2. Implementation

For better direct comparability, we utilize the same train-
ing procedure as in [13]. The approach is implemented in
PyTorch [16, 3]. Models are trained using a EfficientNet ar-
chitecture for 120 epochs on a single Nvidia GeForce RTX
2080 TI with 11 GB GDDR-6. A Stochastic Gradient De-
cent optimizer with a learning rate of 0.1 and reduction of
learning rate by a factor of 0.1 every 30 epochs with a mo-
mentum of 0.9 was used. For the results in Table 2, no
augmentation methods were applied during the training pro-
cess. For the results in Table 3 random 10 degree rotations
were applied to the training set. No pre-training on larger-
scale action recognition datasets was executed in advance.

4.3. Results

Table 2 gives the results for the different modalities
and different datasets in relation to other related methods.
Our approach achieves good accuracies across the differ-
ent datasets and different splits. It not necessarily competes
with recent GCN-based approaches for skeleton-based ac-
tion recognition, but competes very well in comparison to
CNN-based action recognition methods, while still general-
izing well to various other sensor modalities. For the UTD-
MHAD we got the highest accuracy on skeleton sequences,
and improve by a high margin over the fused accuracy of the
similar approach [13]. Individual architectures per modal-
ity potentially lead to higher recognition accuracies [5, 2].
However, we claim that our approach simplifies the action
recognition training and inference by a common architec-
ture for all modalities and relax the need for individual
streams per modality. For motion capturing experiments,
we compete comparably well with the augmented results of
[13]. Similar to the Wi-Fi experiments, we perform better
as the originally proposed approach from [19] and perform
comparably well to the augmented results of sparse repre-
sentation [13]. For the fusion experiments we decided to
use an early fusion method like in [13] to avoid multiple
network-streams to be trained individually. Fusion is done
by concatenating the signal matrices after sub-sampling the
higher frequent modality. As in [13] we could not improve
the results for fused results over the results of only skeleton
data. For the Simitate dataset, we could add object con-
text by fusing the interacting objects to the hand pose mea-
surements. A late fusion method might improve the fusion,
however will add complexity to the overall model by intro-
ducing individual network streams. Our approach mostly
benefits by the simplicity of the approach and the wide va-
riety of supported modalities over the current available ac-
tion recognition approaches. Our approach can not compete
directly with the most recent approaches for skeleton-based
action recognition like [11], but generalize across various
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Table 2. Action recognition results on four different datasets. Accuracy in [%] is given.

NTU 60 NTU 120 UTD-MHAD Simitate ARIL
Approach Type CS CV CS CV RGB Skl IMU Fused MoCap Wi-Fi #

Gimme Signals [13] CNN - - 70.8 71.6 - 93.3 81.6 86.5 96.1 94.9 4
Ours CNN 83.3 81.7 76.7 80.0 - 93.9 80.6 93.2 95.0 93.9 4
Imran et al. [5] CNN+RNN - - - - 83.5 93.5 86.5 97.9 - - 3
Ehatisham et al. [2] HOG - - - - 85.2 - 91.6 98.3 - - 2
Liu et al. [9] LSTM 69.2 77.7 55.7 57.9 - - - - - - 1
Liu et al. [10] CNN 80.0 87.2 60.3 63.2 - - - - - - 1
Liu et al. [11] GCN 91.5 96.2 86.9 88.4 - - - - - - 1
Wang et al. [19] CNN - - - - - - - - - 89.57 1

Table 3. MMAct Challenge results

User Entries Date of Last Entry mAP x-scene AP x-view AP

DeepBlueAI 44 06/08/21 0.9583 (1) 0.9716 (1) 0.9449 (1)
Visual Analysis of Humans 32 06/08/21 0.9288 (2) 0.9468 (2) 0.9108 (2)

Ours 16 06/10/21 0.7406 (3) 0.8064 (3) 0.6748 (3)
MMAct [6] 1 05/07/21 0.4525 (4) 0.4217 (4) 0.4834 (4)

modalities. Further, our approach still achieves a quite high
accuracy for both the cross-view and cross-setup accuracy,
even outperforming the earlier graph convolutional neural
networks [15].

MMAct Challenge

Results for the MMAct Challenge 2021 in the Cross-Modal
Trimmed Action Recognition category are given in Table 3.
Our approach ended third. The challenge focused on ac-
tion analysis in video sequences during test time. During
training, additional modalities were provided that could be
used to guide the training process of a visual model. Our ap-
proach utilized only human pose features extracted from the
video sequences and therefore remains widely applicable on
only video-data. Additional sensor modalities were not in-
tegrated as they were not available during test time but could
potentially further improve results, especially in occluded
settings. Our approach is outperformed by a large margin
by the approaches from the DeepBlueAI team and the Vi-
sual Analysis of Humans. No details about top scoring ap-
proaches were known during the challenge. Our approach
however outperforms the MMAct [6] baseline approach by
a large margin. The MMAct approach follows an interesting
knowledge distillation process which guides a visual model
with knowledge distilled from additional sensor modalities
during the training. Our approach generalizes better on the
cross-scene split then on the cross-view split. This might be
the effect of occlusions and to high variation between the
training and test samples between splits. Additional modal-
ities, like the measurements from the accelerometer of the
smart-watch or smart-phone, could potentially have a posi-

tive impact on the action recognition capabilities. A benefit
of our approach is the wide applicability on various modal-
ities, which allows simple integration of additional modali-
ties. No additional adoptions need to be performed in case
the challenge would have provided additional sensor modal-
ities during test time.

5. Conclusion

We presented an action recognition approach that gener-
alizes well across different sensor data modalities. Motion
data is represented in an image, a well established classifi-
cation CNN is used for the classification of the image rep-
resentations. We showed that our approach is applicable for
skeleton-sequences, inertial measurements, motion captur-
ing data and Wi-Fi CSI fingerprints. Being generalizable
across different sensor modalities is a huge practical benefit
over other available approaches that often focus on improv-
ing results for a single sensor modality.
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